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Shape from Polarization with
Distant Lighting Estimation

Youwei Lyu, Lingran Zhao, Si Li, and Boxin Shi*, Senior Member, IEEE

Abstract—This paper presents a new approach for surface normal recovery from polarization images under an unknown distant light.
Polarization provides rich cues of object geometry and material, but it is also influenced by different lighting conditions. Different from
previous Shape-from-Polarization (SfP) methods, which rely on handcrafted or data-driven priors, we analytically investigate the
benefits of estimating distant lighting for resolving the ambiguity in normal estimation from SfP using the polarimetric Bidirectional
Reflectance Distribution Function (pBRDF) based image formation model. We then propose a two-stage learning framework that first
effectively exploits polarization and shading cues to estimate the reflectance and lighting information and then optimizes the initial
normal as the geometric prior. Leveraging the normal prior with the polarization cues from the input images, our network further
generates the surface normal with more details in the second stage. We also present a data generation pipeline derived from the
pBRDF model enabling model training and create a real dataset for evaluation of SfP approaches. Extensive ablation studies show the
effectiveness of our designed architecture, and our approach outperforms existing methods in quantitative and qualitative experiments
on real data.

Index Terms—Shape from polarization, lighting, physics-based vision
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1 INTRODUCTION

CHANGES in the polarization status during light prop-
agation provide useful cues for estimating shape and

material information of objects. Shape-from-polarization
(SfP) methods aim to recover the surface normal from
single-view polarization images by utilizing the angle of
polarization (AoP) and degree of polarization (DoP) of the
incident light. Shape cues explored from polarization inher-
ently contain pixel-wise geometric information, which could
be much higher resolution than consumer-level 3D sensors,
such as the Kinect [1]. However, they also introduce ambigu-
ities in normal prediction. The polarizer can distinguish the
oscillating orientation of light, but it produces the azimuth
angle with π-ambiguity [2]. Moreover, the coexisting diffuse
and specular reflections have divergent polarization prop-
erties, introducing additional π/2 deviation of the phase
angle [3]. These two primary ambiguities in SfP make the
problem under-determined, and extensive research has been
conducted to deal with this challenging task.

To relieve the ill-posedness of SfP, researchers tend to
assume that the reflectance is dominated by a single com-
ponent or can be classified as the diffuse component and
specular component, and they tackle each one separately.
The dichromatic reflectance model [2], [4] and heuristic prior
of intensities and DoP [5], [6] are adopted to tell the two
types of polarization apart. By investigating only the diffuse
dominant case, the difficulty of handling mixed polarization
could be partly circumvented [7], [8]. Disambiguation is the
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next challenge after determining the type of polarization.
Based on observations and properties of common objects,
the convex prior and boundary constraints of the shape [2],
[5], [6], [7], [8], smoothness priors [6], and shading clues [9]
are popular choices to disambiguate the azimuth angle
of normal. Formulating the polarization constraints as a
linear system of equations, the least squares method [6]
is presented to solve the ambiguity in a global manner.
However, the results of these methods are easily affected
by deviation from ideal conditions in real-world scenarios
when handcrafted priors are poorly observed.

The lighting condition could significantly influence the
polarization properties of the illuminated objects according
to the microfacet theory [10]. Recent SfP works attempt to
acquire quality appealing normal under specified lighting
setups. The special polarization distribution of the sky, such
as sunny weather, could provide extra constraints to facili-
tate the normal recovery [11]. Researchers find polarimetric
diffuse reflectance dominates most of the regions under
the frontal flash illumination [12] except for the directly lit
regions, which simplifies the polarization imaging model.
Thus, the frontal flash setup is used in pBRDF (polarimet-
ric BRDF) acquisition and normal recovery [12], [13], [14].
When the frontal flash is altered to illuminate the object from
a different direction, the position of specular reflection part
changes, but the diffuse reflection is still dominant in rest of
the lit regions. Therefore, it is interesting to explore how a
frontal flash setup or a single distant light will benefit the
disambiguation of normal azimuth angle.

As deep learning achieves great success in vision tasks,
the first deep learning based SfP solution (DeepSfP) [15] has
been introduced to address the limitation of handcrafted pri-
ors and robustness issue of optimization methods. Instead
of solving the normal ambiguity explicitly, DeepSfP directly
predicts the normal map by taking in polarization images
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Fig. 1: The overview of our framework, which has a two-stage architecture consisting of pLTNet and pNENet. Taking in
four polarization images and the mask as input, pLTNet estimates distant lighting and the texture information; with the
lighting and albedo prior, the optimized normal could be computed from the initial normal. Then we introduce pNENet
as well as the diffuse-rendering error map to further refine the optimized normal and obtain the final results.

and ambiguous normals calculated from polarization. De-
spite taking priors of ambiguous normals into account,
DeepSfP mainly relies on the data-driven prior for dis-
ambiguation without considering physics constraints from
lighting and shading. A more recent work [12] additionally
takes the Stokes maps and normalized color maps as a com-
plement for estimating object normals and textures, which
also resorts to the network for normal optimization instead
of explicitly exploiting constraints for disambiguation. The
remaining challenges in disambiguation of SfP normal es-
timation inspire us to take mutual benefits of physics and
data-driven priors to complementarily narrow down the
ambiguous solution space.

In this paper, we exploit polarization images to estimate
the lighting information, textures, and surface normal of
objects under an unknown single distant light. The adopted
lighting setup has merits in two aspects: 1) We could com-
pute the initial normal map from input polarization images
with the approximation of dominant diffuse reflection; 2)
as a spatially uniform vector regardless of pixel locations,
such a lighting model makes it much easier to be estimated
compared to the normal map. Analytically investigating the
relationship between lighting and normal, we derive the
formula that integrates distant lighting and surface albedo
for normal disambiguation. With the explicit constraints,
we could solve the π-ambiguity of azimuth angle and
generate the optimized normal map, which prompts further
refinement. Based on the above analysis, we design a two-
stage learning framework to estimate the surface normal by
combining the polarimetric cues and the shading constraint,
which consists of two sub-networks, i.e., polarization Light-
ing and Texture Network (pLTNet) and polarization Normal
Estimation Network (pNENet), as shown in Fig. 1.

In the first stage, we present pLTNet to simultane-
ously predict the lighting parameters and object appearance
(Fig. 1-pLTNet), which play a crucial role in polarization
imaging model. Then we design a non-learning scheme
to optimize the ambiguous normal computed from polar-

ization properties with the predicted lighting and albedo
(Fig. 1-Normal optimization). In addition, the estimation
error of pLTNet could affect the optimized results, so we
carefully compare different lighting representations and se-
lect the best to boost the performance.

Despite the fact that the normal ambiguities are re-
stricted in the normal optimization, the optimized results
may be unsatisfactory for several reasons. First of all, we
only take account of the diffuse reflection in the optimiza-
tion step. However, the reflection can be a diffuse-specular
mixture or dominated by the specular component (even
if in a small region), which breaks our diffuse dominant
assumption. On the other hand, part of normal is hardly
constrained by the light direction due to the trivial solution
of the optimization formula. To address this issue, we design
a diffuse-rendering error to mark the pixels regarding spec-
ular reflection or inaccurate normals with large values and
reweigh the training loss to enforce the network focusing
on the local normal recovery of the specular regions. Thus,
we further propose pNENet to overcome the limitation
of the physical constraint and refine the normal map by
integrating the polarization priors and shading information
(Fig. 1-pNENet).

Overall, the main contributions of this paper are sum-
marized as:

� We explicitly analyze distant lighting constraints for
normal disambiguation in SfP under a clear obser-
vation of diffuse dominant phenomenon for the first
time.

� We propose a two-stage deep neural network for
joint shape and appearance acquisition from polar-
ization, demonstrating the benefits of incorporating
distant lighting estimation.

� We show the proposed method produces more ac-
curate normal estimates, which quantitatively out-
performs both optimization and learning-based ap-
proaches on the synthetic and real-world data.


