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Abstract—Removing undesirable reflections in photographs
benefits both human perceptions and downstream computer vision
tasks, but it is a highly ill-posed problem based on a single
RGB image. Different from RGB images, near-infrared (NIR)
images captured by an active NIR camera are less likely to
be affected by reflections when glass and camera planes form
certain angles, while textures on objects could “vanish” in some
situations. Based on this observation, we propose a cascaded
reflection removal network with an image feature fusion strategy
to utilize auxiliary information in active NIR images. To tackle
the insufficiency of training data, we propose a data generation
pipeline to approximate perceptual properties and the reflection-
suppressing nature of active NIR images. We further build a
dataset with synthetic and real images to facilitate the research.
Experimental results show that the proposed method outperforms
state-of-the-art reflection removal methods in both quantitative
metrics and visual quality.

Index Terms—Reflection removal, deep learning, feature fusion,
near-infrared image.

I. INTRODUCTION

EFLECTION contamination is commonly confronted

when photographing in front of windows or glass, which
significantly degrades the quality of captured images, as users
prevailingly attempt to obtain reflection-free background im-
ages. In consequence, the reflection removal problem, which is
targeted at removing reflections and recovering the background,
has become an active research area in the computer vision and
computational photography community [1]-[5].

The reflection removal problem is challenging due to its
ill-posed nature (i.e., unknown variables are twice as many
as equation numbers). Before the prevalence of deep learning,
non-learning methods are widely used for reflection removal,
which requires sophisticatedly handcrafted priors observed from
specific scenes such as the gradient sparsity prior [6]-[8], the
relative smoothness [9], [10] and ghosting cues [11]. However,
such methods are ineffective occasionally as the desired low-
level priors merely reveal local characteristics of reflections,
which are weak in generalization and easy to fail in certain
scenes, e.g., reflections with similar content of background
scenes are hard to be separated.
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Fig. 1: An example of the reflection suppression and texture
vanishing phenomenon, with close-up views displayed at the
bottom. RGB and NIR mixture images are captured in front
of a piece of glass simultaneously and the RGB background
image is captured without the glass. Compared with the RGB
mixture image (left), reflections in green boxes are significantly
suppressed in the NIR mixture image (middle), bringing about
the auxiliary contextual information which is consistent with
the RGB background image (right). The texture vanishing
phenomenon is illustrated in red boxes, where textures on the
LED monitor are invisible in the NIR mixture image (middle)
compared with RGB images (left and right), since the monitor
does not emit light containing NIR spectral components.

In recent years, methods based on deep learning develop
rapidly, which have been demonstrated to be effective in
reflection removal with a single image as the input [1]-[4], [12],
[13]. Due to the reliance on features learned solely from input
mixture images, the performance of these methods is highly
relevant to the similarity between training and testing scenes.
User guidance [5] or auxiliary information independent from
image contents [14]-[18] can help to relieve such a restriction.

Following the popularity of Kinect V2, active near-
infrared (NIR) cameras have become easily available for non-
professional users (e.g., for smartphone users, Huawei P40
Pro and Samsung Galaxy Notel0 have such cameras). NIR
images captured by such cameras are physically less sensitive
to reflections when glass and camera planes form certain angles,
which contain crucial clues for reflection removal. However, the
texture vanishing phenomenon may appear in NIR images due
to the different physical properties between NIR and visible
light. This phenomenon describes a situation where textures on
objects could “vanish” if emitted lights from light sources do
not contain NIR components or reflected NIR intensities are
consistent across a single material. An example is illustrated



IEEE TRANSACTIONS ON MULTIMEDIA

in Fig. 1, which presents the reflection suppression and the
texture vanishing phenomenon in NIR images.

To address the above issues, our preliminary work,
near-infrared image guided reflection removal network
(NIR2Net) [17], for the first time introduces active NIR
images into reflection removal pipeline and proposes a two-
stream framework with multi-stage feature guidance strategy,
which shows more promising reflection removal performance
compared with RGB image based methods [2]-[4]. However,
NIR?Net [17] utilizes the auxiliary information in NIR images
at decoders of its two sub-networks, indicating that the guidance
for reflection separation and background recovery is only
conducted on the latter part of the network, which neglects
global influence. Besides, the data generation pipeline of
NIR?Net [17] ignores certain perceptual disparity between NIR
and RGB images, which degrades the generalization capacity
of the network on real data.

In this work, we analyze the differences of light trans-
mission characteristics between passive RGB imaging and
active NIR imaging to further demonstrate the reflection-
suppressing property of the active NIR imaging. In contrast to
the two-stream framework with multi-stage feature guidance
in NIR?Net [17], we propose the NIR and RGB feature
fused Reflection Removal Network (NIR®Net). The network
architecture is illustrated in Fig. 2. NIRNet is composed
of three modules: the feature fusion module (FFM) for the
fusion and enhancement of multi-scale contextual features from
NIR and RGB images, the feature refinement module (FRM)
for the exploration of auxiliary information and the removal
of reflections in feature space, and the background recovery
module (BRM) for the estimation of RGB background images.
Compared with NIR?Net [17], the feature fusion strategy
and the cascaded network architecture render the exploitation
of intrinsic correlations between NIR mixture images and
background scenes to be more sufficient and effective. Besides,
we replace the difference loss in NIR?Net [17] with a simple but
effective gradient loss to diminish the influence of the texture
vanishing phenomenon. Furthermore, we improve the data
generation pipeline by considering more appearance differences
between NIR and RGB images, which generates data more
conforming to real distributions. Our major contributions are
summarized as follows:

We propose a cascaded reflection removal network via
NIR and RGB image feature fusion, which can deal with
the impact of the texture vanishing phenomenon.

We propose a data generation pipeline to approximate
physical and perceptual properties of active NIR images.
We build a reflection removal dataset containing synthetic
and real data of NIR and RGB images, which promotes
the generality of network models and facilitates future
research in this area.

II. RELATED WORK

A. Reflection removal

Reflection removal has become an active research area in
computer vision community for more than decades. For non-
learning methods, handcrafted priors observed from reflection-
contaminated images are widely adopted to facilitate solving the

ill-posed problem. Based on the gradient sparsity prior derived
from statistics of natural scenes [6], [7], Levin and Weiss utilize
the iterative reweighted least squares optimization approach to
separate reflections and background layers with assistance of
users [8]. Li and Brown [9] exploit the relative smoothness to
solve the layer separation problem. Wan et al. [10] utilize the
smoothness prior and Depth of Field (DoF) confidence maps
to distinguish edges of reflection and background layers for
the subsequent separation. Shih et al. [11] take the ghosting
cues into consideration and use a GMM model to remove
reflections. Wan et al. [19] integrate gradient and content priors
jointly to achieve background and reflection separation. Though
above priors exploit differences of visual properties between
background and reflection layers in certain scenarios, they are
likely to fail in more complicated real-world situations.

Thanks to the comprehensive modeling capacity of deep
learning, learning-based methods become prevalent in reflec-
tion removal. CEILNet [1] adopts the traditional two-stage
framework which predicts edge maps and background layers
successively. Zhang et al. [2] propose a neural network with
perceptual loss to emphasize the independence of background
and reflection layers in the gradient domain. CRRN [20] and
CoRRN [3] combine the gradient inference and the image
inference in one unified mechanism to remove reflections
concurrently. ERRNet [4] embeds context modules in the
network and exploits the unaligned data to enhance the
generality of the model. Wen et al. [21] synthesize reflection
images with learned non-linear blending mask and accomplish
reflection removal based on such non-linearity. LBCLN [12]
proposes a cascaded refinement approach with convolutional
LSTM network structure to refine estimation of background
and reflection layers iteratively. Kim et al. [13] generate data
with physically-based rendering and restore the background
layer considering the various impacts of glass and lens.

Restricted by limited clues (e.g., the defocus of the reflection
layer) for separating the reflection and background layer
from a reflection-contaminated image, single-image methods
perform poorly in images with strong reflections or where
the content of reflections is similar to background layers.
Therefore, auxiliary information is introduced to facilitate
reflection removal. Zhang et al. [5] involve user interaction to
indicate background and reflection layers and propose a two-
stage pipeline for reflection removal. A series of work exploits
characteristics of the polarization to accomplish reflection
removal using polarized images with different polarization
angles [15], [16], [22]. Sun et al. [14] use the shape and edge
information in depth maps to guide reflection removal, which
has limited capability in recovering details in background layers
due to the texture-less appearance of depth maps. Besides, as
flash images can provide auxiliary information of background
layers and less interfered by reflections due to the active
imaging, Chang et al. [18] utilize a pair of no-flash and flash
image to remove reflections via a siamese dense network. To
avoid the drawback that the active visible light imaging is prone
to be affected by other visible light sources, our method is
based on the more reliable active NIR imaging since common
indoor lighting rarely covers the NIR spectrum [23].
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Fig. 2: The network architecture of NIR®Net. Three modules: the feature fusion module (FFM), the feature refinement module
(FRM), and the background recovery module (BRM) are cascaded to accomplish reflection removal successively.

B. Near-infrared imaging

NIR imaging can be divided into two categories: the passive
imaging and the active imaging. The passive NIR imaging is
often implemented by attaching NIR pass filters in front of
lenses [24], [25], with intensities of captured images to be
determined by the NIR component of ambient light. Owing
to the unique physical and perceptual properties compared
to RGB images (e.g., higher contrast of natural and artificial
objects [26] and less atmospheric scattering [27]), passive
NIR images have been utilized for various computer vision
tasks such as dehazing [27], shadow detection [28], semantic
segmentation [29], and intrinsic image decomposition [25].
Utilizing active NIR projectors, the active NIR imaging has
been widely applied to 3D sensing devices (e.g., Kinect V1
and V2), which are leveraged for computer vision tasks like
geometry refinement [23] and robot navigation [30]. Exploiting
the reflection-suppressing property of the active NIR imaging,
this work utilizes the detailed content information about
background layers in captured active NIR images to achieve
reflection removal with a feature fusion strategy.

IIT1. PROPOSED METHOD

In this section, we describe the reflection-suppressing prop-
erty of the active NIR imaging, the design methodology of the
proposed network architecture with elaborate loss functions,
and implementation details of network training.

A. Reflection-suppressing active NIR imaging

The key constraint of the proposed method is the observation
that the majority of images taken through the glass by
active NIR cameras are hardly affected by reflections, except
that large angles are formed by the imaging plane and the
glass plane (say > 80, indicating a large incidence angle
of lights from reflection scenes). In contrast, corresponding
RGB mixture images are always blended with undesirable
artifacts compared with NIR mixture images. Fig. 3 shows
how incidence angles of lights from reflection scenes influences
the reflection suppression phenomenon in active NIR imaging.

Fig. 3: Examples of how incidence angles of lights from
reflection scenes influence glass reflections in NIR mixture
images. When the angle is relatively small as = 40 (the
first row), compared with the ground truth (the second row),
reflections of the lamp (green boxes) are invisible in the
NIR mixture image. When increases to 80 (the third row),
reflections of the printer (red boxes) can be observed in both
RGB and NIR mixture images, indicating that a large incidence
angle (hardly encounters in practice) diminishes the reflection-
suppression property of the active NIR imaging.

We model the light propagation process based on the Fresnel
equation [31], and simplified light paths of the passive RGB
imaging and the active NIR imaging are illustrated in Fig. 4.
For the passive RGB imaging in Fig. 4(a), suppose Ip, I,
to be the intensity of the background and reflection scene
respectively, we define the intensity of visible lights received
by the camera as | gy, which can be expressed as:

[FR(C)+ [l R ()]s )

where  represents the incidence angle and R( ) is the
corresponding relative strength of the reflective component [32].
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